
1

Open Source Cookbook
The Ultimate Guide to Software Composition Analysis

O P E N S O U R C E C O O K B O O K 2

Introduction
Organizations who create software utilize

a host of different technologies and solutions

to help them ensure the code they create is

void of potentially exploitable security

vulnerabilities. Static, dynamic, and interactive

application security testing (AST) solutions

designed to scan custom and compiled code

abound within many organizations today.

These solutions are best for the situation

at hand, but often prove insufficient when

examining the open source code that finds

its way into your custom software. Clearly,

something else is needed.

Today, the average application is composed mostly of open source libraries and

components; many analyst reports indicate these components make up more

than 80% of the average codebase. As enterprises increase their adoption of open

source – often to the degree of endorsement – we witness a fundamental shift in

the software industry.

As a result, developers spend their time on key differentiators, proprietary features

and functionality, and interoperability among custom and open source components

that power the software itself, rather than recreating common software essentials

from scratch. Such a transformation has accelerated development cycles and is

forcing organizations to establish modernized processes to evaluate and secure

both the software they create, and that which they consume.

Organizations who use open source software need solutions that are capable of

detecting and identifying the open source or third-party components within their

applications, and provide detailed risk metrics concerning open source vulnerabilities,

potential license conflicts, and outdated libraries; industry influencers have

deemed these “software composition analysis” solutions. When integrated into an

organization’s CI/CD pipeline and SDLC, these solutions can enable development,

security, and DevOps teams to prioritize and focus remediation efforts where they

will be most effective and least costly, before potentially at-risk projects can be put

into production.

2

4

5

	

 6

7

8

9

- How Does Open Source Software Evolve?

- How Is Open Source Software Licensed?

- Is Open Source Software Vulnerable?

- An Attack Example 9

SECTION 2: A Cookbook Analogy		 11

- Selecting Your Recipe 12

Open Source Recipes Evolve Over Time 12

Selecting Your Open Source Recipe 				 12

- Understanding Your Ingredients 13

- Prepping Your Kitchen 13

13

14

			

 14

Table of Contents

SECTION 3: What is Software Composition Analysis (SCA)?	 15

- What’s the Difference between SCA and SAST? 16

- Some Key Aspects of SCA 17

SECTION 4: Technical Deep Dive into SCA	 18

- Open Source Detection Methodologies 21

Signature Scanning		 22

Package Managers		 22

Snippet Scanning 23

- Component Identification 23

- Risk Metrics 24

License Risks 24

Section 5: Points to Consider When Purchasing 26
an SCA Solution	

What You’ve Learned	 28

Conclusion								 29

O P E N S O U R C E C O O K B O O K 4

Open source software has facilitated the rapid evolution of application development

and shortened development cycles. As with any new advancement in technology, there

can be risks associated with open source components which organizations must identify,

prioritize, and address. Security vulnerabilities can leave sensitive data exposed to a breach,

complex license requirements can jeopardize your intellectual property, and outdated

open source libraries can place unnecessary support and maintenance burdens on your

development teams.

Today, organizations need deep insight into open source security vulnerabilities affecting

their software, with risk severity metrics, detailed vulnerability descriptions, and remediation

guidance to mitigate the risk of exploitation. This eBook is designed to help organizations,

management teams, security practitioners, and developers understand Software Composition

Analysis (SCA) in depth.

Why This eBook

This eBook is designed to help organizations, management teams, security practitioners, and
developers understand Software Composition Analysis (SCA) in depth.

O P E N S O U R C E C O O K B O O K 5

This eBook begins with the differences between custom code and open source software. It

then provides an interesting analogy for those who are new to SCA solutions to help them

understand and effectively articulate the need. Then, it deeply discusses SCA and provides

a technical deep-dive. Finally, it provides guidance and points to consider when evaluating

and purchasing an SCA solution. After reading this eBook, and referring to it often, readers

will obtain significant knowledge of approaches to effective SCA, best practices, and viable

solutions for the modern software organization.

What You Will
Learn

After reading this eBook, and referring to it often, readers will obtain significant
knowledge of approaches to effective SCA, best practices, and viable solutions for
the modern software organization.

O P E N S O U R C E C O O K B O O K 6

Custom code is often referred to as
proprietary code that is originally
developed by a person or a team, and it’s
the intellectual property of an organization
or that individual. This code is maintained
by the creators or the owners of that code,
so any innovation or enhancements to this
code must be made by the person, the
organization, or the company responsible.
Any new versions or new releases are the
responsibility of those creators, including
any patches or updates required to fix any
vulnerabilities. This code can be incorporated
into other projects, or released individually
as its own complete software.

Custom Code vs.
Open Source Software

S E C T I O N 1

O P E N S O U R C E C O O K B O O K 7

How Does Open Source
Software Evolve?

Open source software, on the other hand, is created by developers, but often as a part of a community-driven project in

which ideas and contributions are shared. This software is made available to the community as what are referred to as

projects or components. This is where innovation happens organically throughout the community and in this instance,

any updates, patches, and new releases are the responsibility of that community. The project or components evolve

over time and each component can have licenses associated with it, which will detail any restrictions, permissions, or

requirements that the project originator may choose to place upon it.

An open source component or project begins from

a certain point in time with what is called a master

branch. This is the black line at the top of Figure 1.

The open source community evolves and changes

this master branch and the associated open

source component over time. They do this by

creating branches (e.g., New Dev Branch, Bug Fix

Branch, New Feature Branch, etc.) off of that

master branch to modify the code.

Figure 1

O P E N S O U R C E C O O K B O O K 8

Usually, the purpose of this modification is to create new features or new functionality, to perform bug fixes, and to do various

types of testing. New branches are then merged back into the master branch, as you can see by the arrows going back up into

that main black line, and incorporated back into that main project. Or they may be maintained as a separate fork of the project

overall. Usually, this is done when contributors or groups modifying the project intend to take it in a different direction than the

one that the master branch was heading, or to suit another use case.

How Is Open Source Software Licensed?

Open source projects can have virtually any licensing structure. The author or originator of

the component decides how that component should be licensed. They could leverage any

one of thousands of existing licenses, or they could even make up their own. There are two

main categories of open source licenses; copyleft licenses, often referred to as reciprocal

licenses, and permissive licenses. In general, reciprocal licenses place restrictions or

requirements on the distribution, attribution, or release of source code associated with the

component, or the projects into which that component is incorporated. Permissive licenses

generally place minimal requirements on software distribution and attribution.

As shown in Figure 2, some common examples of open source licenses include GPL 3.0,

MIT License, or Apache 2.0. There are, however, also some examples of licenses that may be

less common, but illustrate how an author can be free to create their own. The WTFPL

License is completely open and the Beerware License, for example, requires that anyone

who leverages a component with that license buys the author a beer.

Figure 2

Some Examples of Open Source Licenses

GPL 3.0

MIT License

Apache 2.0

WTFPL (Do what the F*** You Want to Public License)

Beerware License (Buy the Author a Beer)

O P E N S O U R C E C O O K B O O K 9

Is Open Source
Software Vulnerable?

To be extremely clear, not all open source software is vulnerable. Open

source components are used everywhere and, as with custom code,

there are situations in which open source components can be vulnerable.

Usually this means understanding the difference between a vulnerable

component and vulnerable versions of that component.

A component can contain vulnerabilities, but only in certain versions,

and it’s possible that newer versions may not contain the same

vulnerabilities that previous versions did. However, some components

may contain their own vulnerabilities that did not exist in previous

versions, since a vulnerability may have just been introduced in the

latest component version. It all depends on how that software is

constructed and how it evolves over time.

With this in mind, a component version that may not have a vulnerability

within it right now may, at some point in the future, have a vulnerability

that is introduced. The past version was not vulnerable, but a newer

version is. Furthermore, not every vulnerability may be exploitable,

even if the component has a vulnerability. Security researchers, or even

attackers, have to discover a vulnerability first, then develop an exploit

to take advantage of it, in order to compromise the software. Even

then, how that component is incorporated into the overall code of the

application may determine whether or not a vulnerable condition can

be met in order to execute the exploit.

An Attack Example

Concerning an attack that may be enabled by the usage of open source

components, let’s explore the timeline of an attack as shown in Figure 3 below.

Figure 3

Imagine a timeline that represents a period of time during which an open

source component exists. Maybe it’s in your codebase, maybe it’s not, but

this component exists over time. At some point, a vulnerability is discovered.

It could be the creators who discover the vulnerability, or maybe a security

research team, or perhaps attackers. This vulnerability may get documented

in a vulnerability database like the NVD, or those who discover it may keep

the vulnerability secret for some time while people work on a patch.

Regardless, some amount of time passes between when the vulnerability

is discovered, and when the patch is released. Then, more time passes until

that patch is applied, effectively mitigating that vulnerability.

Component
Version
Released

Vulnerability
Discovered

Patch
Released

Patch
Applied

Exploit
Published

O P E N S O U R C E C O O K B O O K 10

It’s possible that an exploit is discovered for this vulnerability and that

exploit can be kept secret, but frequently it gets published among attacker

communities or in public forums like YouTube. At that point, the world knows

about the exploit and how it can be used to abuse that vulnerability. The time

period between when an exploit is discovered and when the patch is applied

is the window of opportunity for an attacker to infiltrate the application,

It’s possible that an exploit is discovered for this
vulnerability and that exploit can be kept secret,
but frequently it gets published among attacker
communities or in public forums like YouTube.

potentially compromising data, intellectual property, or simply impeding the

application’s performance. Clearly, the need to patch vulnerabilities quickly

exists in nearly all cases.

Before moving on, let’s look at an analogy that should help you understand

the three primary concerns pertaining to the use of open source software.

O P E N S O U R C E C O O K B O O K 11

When building applications that contain
open source components, a parallel can
be drawn to a software cookbook. Most
meal ideas found in a cookbook have three
components: a recipe, a list of ingredients,
and a list of kitchen gadgets needed to get
the meal just right. Some people follow the
instructions step by step, while others will
only follow the basics and do things a little
more their own way. Regardless of how it’s
done, the main goal is to prepare something
that is pleasantly consumable. With this in
mind, let’s explore the process of selecting
your recipe first.

A Cookbook
Analogy

S E C T I O N 2

O P E N S O U R C E C O O K B O O K 12

Selecting Your Recipe

It is often said that open source software is like a recipe. When cooking or

baking, you are likely to use a combination of your own know-how, recipes

you’ve borrowed from others, and some ready-made bits you purchase from

elsewhere. That is the essence of modern application development; the code

you write and the code (software) you purchase or license. Open source

components are part of this equation.

Open Source Recipes Evolve Over Time
No recipe is perfect from the start. Changes to open source components can

manifest themselves as new versions, and often are the result of development

efforts in parallel to the current main project (referred to as branches or forks).

As previously discussed, branches often include development activity for new

features, bug fixes, and testing, and can be incorporated back into the main

project. These branches and forks can be the result of collaborative evolution,

or simply one contributor’s ambitious activity. Regardless, with each new

version of a component, we are slightly more removed from the origin of the

component.

Selecting Your Open Source Recipe
As with cooking, when incorporating open source components into

applications, it’s important to understand the origin and evolution of

what you’re baking into your software. Carefully review your open source

component versions, and evaluate the community’s activity in order to have

the greatest chance possible to predict the potential technical debt

you may inherit.

While two components may share a name, they may differ greatly depending

on the vendor that provides them. For example, while one vendor’s take on an

open source component (what the tech community refers to as a distribution,

or distro) may be, fundamentally, the same as another’s, they may have made

some minor changes to suit their needs (i.e., compare Red Hat Enterprise

Linux and Ubuntu, as they pertain to Linux). These changes can have

implications on function or compatibility, and should be considered when

selecting open source components for your applications.

Each distro experiences forks in which both major and minor changes occur.

This can create a significant deviation, over time, among two different types of

what had otherwise been considered the same component. It can introduce

additional maintenance and development costs for you in the future, or

expose you to unexpected security and compatibility issues if you don’t fully

understand the nuances of each. Beyond the concept of a software recipe,

let’s next look into the software ingredients that make up your applications.

O P E N S O U R C E C O O K B O O K 13

Understanding Your Ingredients

Open source components can have security vulnerabilities, and some

are more severe than others. It’s important to understand if there are

any vulnerabilities in the components you select, because when those

components get baked into your applications, they can be potential open

doors for attackers. Depending on the source or origin of that component,

you may get notified when they’re discovered, or you may not. In keeping

with our analogies to recipes and food, you can consider these helpful

notifications of risk similar to recalls on certain food items.

As an example, components from Red Hat or Apache may yield helpful

alerts when vulnerabilities are discovered, or when patches are available

to remedy such vulnerabilities. Components from community-driven

development groups may not have such proactive alerting, making it your

responsibility to identify and fix these risks, whether you have the support

of the community or not.

It’s important that you understand how you will identify the vulnerabilities

that may be present in the components you select, how you will discover

new risks as they emerge after you’ve baked them into your applications,

and how you will get your developers the information they need to fix those

issues. Now that we’ve briefly discussed software recipes and software

ingredients, in order to get the meal just right, we’ll focus our attention on

your software “kitchen” where everything is assembled. Let’s explore this

concept next.

Prepping Your Kitchen
As with cooking, software development requires a well-equipped “kitchen”

with tools, methods, and processes firmly established to create stable

and secure software from an eclectic mix of custom code and open source

components. Perhaps the “refrigerator” and “cabinetry” are your code

repositories, which may be internal resources, commercial solutions you’ve

licensed, or public resources like GitHub, for example. Maybe your “pots

and pans” are package managers and build tools. Maybe your “oven” is your

testing or staging environment. Perhaps your "utensils" are IDEs, and your

"gadgets" might be your application security testing solutions. Regardless,

your developers are making use of a rather complex software development

environment, with many aspects which must be configured and maintained

to produce “edible” software.

Kitchen Gadgets for Application Security Testing
The tools and gadgets your developers, security, and DevOps teams use are

instrumental to the performance, stability, and security of the software your

organization publishes. Because your software recipes use a mix of custom

code and open source components, the application security testing gadgets

you use need to be purpose-built to identify, triage, and remediate any issues

in whichever type of software and code they examine.

The tools and gadgets your developers, security,

and DevOps teams use are instrumental to

the performance, stability, and security of the

software your organization publishes.

O P E N S O U R C E C O O K B O O K 14

For many organizations, their software kitchen is stocked with these

essential applications security testing tools:

 Static Application Security Testing (SAST)

 Interactive Application Security Testing (IAST)

 Software Composition Analysis (SCA)

Keeping Your Software Kitchen up to Snuff
Organizations who create software are often subject to external and

internal standards and requirements. It may be that your organization

has committed to upholding SLAs to customers and internal stakeholders.

It may be that your organization is subject to data protection requirements

(e.g., E.U. GDPR, PIPEDA, etc.). In any case, it’s important that you under-

stand which standards and regulations your organization is subject to, and

ensure you have the software security testing solutions in your arsenal to

be able to support your efforts.

Use Your Tools While Cooking, Not After
Lastly, take a look at your software kitchen (your development

environment, CI/CD pipeline, SDLC, and DevOps practices) and evaluate

how you have integrated those necessary technologies along the way.

You shouldn’t wait until you’ve taken the steak off the grill and plated it to

check the temperature. You shouldn’t wait to add your egg/sugar mixture

to your warming milk when making ice cream. And you shouldn’t wait until

the security testing phase to identify vulnerable open source components

within your software. Instead, use the right gadgets (AST solutions) while

you’re cooking, not after the dish is complete.

The purpose of the aforementioned analogy was to help those who are

new to the concept of open source components and how they’re used in

today’s modern software development environments. If organizations

utilize open source components, they must have a way of analyzing the

composition of their software to ensure the components they’re using are

safe and licensed appropriately. In order to do that properly, software

composition analysis (SCA) solutions are a critical resource. In the next

section, we’ll explore SCA at length.

O P E N S O U R C E C O O K B O O K 15

SCA is the market-defined term for
analyzing software, discovering open
source components and third-party
libraries within it, and identifying the
risks associated with them. SCA focuses
on measuring two main types of risks.
There’s security risk (these are open
source vulnerabilities) and license risk
(these can be conflicts between open
source licenses or could be non-compliance
with the requirements outlined within
those licenses). Sometimes, there may be
a third, non-standard category of risk that
explores community activity surrounding
the component.

What is Software
Composition
Analysis (SCA)?

S E C T I O N 3

O P E N S O U R C E C O O K B O O K 16

What’s the Difference
between SCA and SAST?

Having been around for over a decade, SCA originally focused on license compliance for software and embedded technologies

like hardware and chipsets. But, with the growing popularity of open source, software security started becoming the biggest

use case for SCA. Now, SCA is evolving to extend its influence across the AST portfolio, with some SCA solutions integrating and

correlating data with SAST solutions to better-assess exploitability and examine if vulnerable components are actually called by

the application. With its current trajectory, SCA is poised to mark the next great wave of secure software development.

SAST examines source code directly to look for weaknesses or vulnerabilities in the code that

might be able to be exploited. Any vulnerabilities that are identified within the code are going

to need to be taken out of the application. Therefore, developers will need to rewrite the

pieces of source code to remove any vulnerabilities. As you might expect, this takes time and

effort, and the SAST analysis itself can be a lengthy process, depending on the size of the

codebase being analyzed.

With software composition analysis, because it’s looking for open source components within

code and not examining source code itself, it needs to be able to detect and identify any open

source component versions within the software, match those identified versions against

a database of vulnerabilities, and then, any vulnerabilities that are identified within that

software are going to need to be patched or replaced. This means either changing the version

of the component that is within the software to one that does not have vulnerabilities, or

perhaps replacing the entire component itself.

O P E N S O U R C E C O O K B O O K 17

Some Key Aspects of SCA

Any SCA solution must include some basic capabilities if it’s going to have

a chance at helping organizations achieve their goals for secure application

development. It must be able to accurately detect and identify open source

components and component versions in use within software. It must

be able to provide insight into any vulnerabilities associated with those

components and component versions, as well as any licenses that may

apply to them. It must provide actionable risk insight and remediation

guidance. It must allow organizations to configure and enforce policies

against the analysis results. And, finally, it must be able to integrate with

any tools that your organization is using in its SDLC or CI/CD pipelines, and

deliver the aforementioned insight and results into the hands of the people

who need it, in the manner in which it is most helpful to them.

It must be able to provide insight into any vulnerabilities
associated with those components and component versions,
as well as any licenses that may apply to them.

Depending on the vendor, some SCA solutions might also include additional

functionality as follows:

• Ability to identify if a vulnerable open source component version

is actually exploitable

• Metrics associated with component bugs and community activity

• Correlation of analysis results with other application security

testing solutions

Regardless of the approach/capabilities of the chosen SCA solution, most of

them operate in similar ways. We’ll explore further.

O P E N S O U R C E C O O K B O O K 18

Technical Deep Dive
into SCA

S E C T I O N 4

O P E N S O U R C E C O O K B O O K 19

19

Software composition analysis happens in three major steps:

1. Detection

In order to identify open source and

measure its risk, we must first detect its

presence. Open source detection is the

process of finding open source

components within software and

codebases. Some approaches to

detection yield a high number of false

positives and take a long time to

accomplish, while others yield higher

accuracy in a shorter amount of time, yet

require slightly more up-front

configuration.

2. Identification

Next, SCA has to identify the open source

components it has detected; you have to

know what there is before you can deter-

mine if what’s there is safe. This usually

requires a database of open source

component information to reference for

identification of the detected compo-

nents. Usually, the information you get

back during this process includes basic

component version information. Some-

times, this data also includes information

about where the component version

came from, if it’s a particular distribution

of the open source component, or some

other specific metadata.

3. Risk Metrics

Finally, you have to include risk met-

rics based on what you detected and

identified in the first two steps. This is

almost always security information and

license data. Again, you need a database

of information which you can reference

your findings against. This time, that

database is going to include vulnerability

and license data rather than component

metadata, and may include data exclu-

sive to the solution vendor itself, backed

by their research team (if they have one).

Usually, security risk is ranked on severity

as defined by standards like CVSS2.0 or

CVSS3.0. Sometimes, SCA customers can

even customize risk metrics on their own;

of course, this has its own pros and cons

once you start deviating from standard-

ized metrics.

O P E N S O U R C E C O O K B O O K 20

Figure 4

Open Source
Detection

• The process of finding open

source components within

software or a codebase

• Can be accomplished in

multiple ways

Component
Identification

• Requires a database of open

source component information

to reference for identification

• Usually includes version

• Sometimes includes component
or library source data

Risk
Metrics

• Requires database(s) of security

vulnerabilities and licenses to

reference

• Usually ranked by standards

• Sometimes can be customized

Figure 4 summarizes the steps that must be taken, as discussed ealier.

O P E N S O U R C E C O O K B O O K 21

1. Open Source Detection Methodologies

How do SCA solutions detect open source components? It’s important to

understand that not all SCA solutions take the same approach to detection.

Some solutions may perform what’s known as signature scanning in which

the SCA solution will scan the application and generate unique SHAH1 hash

signatures of the open source components it detects. You can think of

these as unique fingerprints of the specific component versions in use. The

SCA solution then tries to match these hash signatures against a database

of previously scanned open source components and their corresponding

“fingerprints.”

Often, SCA solutions will look at the files that are used by package

managers and build tools when compiling applications. In this case, it

will determine the specific component version in use from the package

manager declarations. You can think of this as examining what the

developers say is in the software.

Lastly, there’s dependency resolution in which an SCA solution examines

the software following the build process to find any dependencies that

were not declared, but which were brought into the application during

the build process. Any dependencies that were not declared for the build

process can obviously introduce unknown vulnerabilities into software.

The SCA solution tries to match the hash signatures against
a database of previously scanned open source components
and their corresponding “fingerprints.”

O P E N S O U R C E C O O K B O O K 22

Signature Scanning
The main benefit of signature scanning (sometimes known as file system

scanning) is its ability to produce a large number of results, which many

people consider to be the most complete or comprehensive representation

of all the open source components within a codebase. This type of scanning

can detect any non-declared components that may not have been included

in the package manager files, or if software was built without the use of

package managers. This methodology does have some downsides though.

The scanning process can take a long time, consume a lot of compute

power, and produces a large number of results that need to be reviewed.

Often, these results include many false positives. When time is short and

you’re approaching your production deadlines, this methodology may

cause you more headaches than it resolves.

Package Managers
When an SCA solution uses package managers to detect open source

components, we see a few more benefits. These results tend to be

highly accurate and produce false positives at very low rates. This tends

to result in less noise or fewer junk results, obviously making it easier

for organizations, developers, or security teams to review these results

and prioritize their efforts. These scans tend to be a lot faster, and this

methodology is more suitable for DevOps by way of its integration with

the CI/CD tools that developers are using.

Package manager inspection, however, may not identify all open source

within the analyzed codebase if components are not declared, or if the

software is built without the use of package managers, as we often see

in some legacy applications. This is why solution providers often pair this

methodology with build dependency analysis. This is going to detect any

non-declared dependencies that get incorporated during a build, or any

dependencies of dependencies, which we consider transitive dependencies.

A quick way to think of the pros and cons of each detection method might be to
ask yourself: "Do I need to find everything," "do I have time to review a lot of
results," or "do I need to generate highly accurate results quickly?"

O P E N S O U R C E C O O K B O O K 23

Snippet Scanning
Similar to signature scanning is snippet scanning, in which the SCA

solution performs a signature scan not of entire open source components,

but instead looking for smaller subsets of open source component code

that match previously scanned and documented component segments

within a database. This could be as long as just a few lines of code, looking

at unique hash natures of those smaller code snippets. Snippet scanning

can help identify any potential license requirements, license conflicts, or risk

of noncompliance that are the result of a developer copying a small piece of

code from a larger body of work. This is predicated on the results of a

snippet scan being matched to an original open source component.

As you may expect, this process takes quite a long time and consumes

a lot of compute resources. The results of snippet scanning can be very

noisy, with a very long list of potential matches with a low certainty of exact

matches and a high prevalence of false positives. And, of course, these

snippet results are virtually worthless at identifying vulnerabilities since a

vulnerability does not necessarily need to exist within a small snippet of

code. This type of scanning usually only benefits license- oriented use

cases.

2. Component Identification

After we detect open source components using one or several of the

methods that we just discussed, we must identify them. So how does

component identification work? Often, component metadata is referenced

against a database of open source components maintained by the solution

vendor.

These databases contain information from various code repositories and

sources like GitHub, Maven Central, and a wealth of others. If a component

is found in this database that matches the detected component, its

information is displayed in the SCA solution. This is where the risk of false

positives is greatest, and this is where the detection methods that we just

discussed have the greatest impact on the quality and actionability of the

results.

O P E N S O U R C E C O O K B O O K 24

3. Risk Metrics

After we’ve identified our open source components, we need to generate

some risk metrics associated with them – a necessary step to prioritizing

where we focus our efforts to improve our risk posture. How does the

process of generating open source risk metrics work? Well, first, identified

component versions are checked against databases of vulnerabilities and

licenses. Security and license risks are reported back to the SCA tool’s

analytics UI (user interface) and associated with the components that were

analyzed in the codebase.

It’s important to understand that risk metrics are not always standardized

and the severity or priority associated with these risk metrics can vary

by the SCA solution vendor. Security risk often has standardized scoring

available for organizations to choose from; usually, this is CVSS2.0 or

CVSS3.0 scoring. In this case, the user can adjust the sensitivity to risk

based on various criteria associated with the project that’s been scanned.

As mentioned earlier, this is not a standard capability for all SCA solutions,

and eliminates the ability to evaluate the risk profile of one project against

the relative risk profile of another.

License Risks
Security risk metrics are among the most common criteria to impact

any policy rules that organizations choose to put in place. License risks,

however, are highly contextual and can vary depending on the deployment

model of the application for example:

• An internal application that’s on company servers and not for public

or commercial use

• An external-facing application

• A commercial application

In addition, other components or licenses within the application may

impact license risk. This is known as license conflict. The presence of both

permissive and reciprocal licenses within the same application can tend

to lead to some complicated results, as an example, and any royalties or

attribution requirements placed upon them are also a concern. All of these

things can determine the severity of your license risk.

It’s important to understand that risk metrics are not always standardized and the
severity or priority associated with these risk metrics can vary by the SCA solution vendor.

O P E N S O U R C E C O O K B O O K 25

There is no standardized measure of license risk. But there is a common

expectation that licenses that cost money, restrict usage scenarios,

or require sharing intellectual property from the associated codebase

are all generally considered to be higher risk. License risk, as a result of

software composition analysis, is usually most relevant to embedded

devices or chipset manufacturers; you can think of this as relevant

to industries like the Internet of Things (IoT), or tier-one and tier-two

automotive industry suppliers, system integrators, and similar situations

where it can be hard to access, replace, or update the software or the

device on which the software sits. These tend to coincide with industries

where potential loss of intellectual property due to license conflicts or

non-compliance can be devastating.

When organizations consider purchasing a commercially-available SCA

solution, there are several factors that must be measured. Let’s explore

some points to consider.

O P E N S O U R C E C O O K B O O K 26

Points to Consider When
Purchasing an SCA Solution

S E C T I O N 5

O P E N S O U R C E C O O K B O O K 27

Consider solutions which are part of

a complete AST portfolio, or which

complement those you’re currently using.

Give special attention to solutions which

allow unified user management, project

creation, and scan initiation capabilities

for multiple testing technologies, as

these will yield the greatest efficiencies

and reduce total cost of ownership.

Give priority to solutions which enable

cross-product synergy, such as leveraging

SAST to verify that an open source

component identified as containing a

vulnerability is actually being called by the

application’s source code. Capabilities like

this will help prioritize your remediation

efforts and enhance the accuracy and

actionability of the analysis itself.

Ensure the solutions you explore can

support your internal and external

compliance requirements by way of

policy controls. Perhaps your security

team has unique standards for projects

depending on their attributes. Your legal

teams may have established rules to

protect valuable intellectual property.

Your engineering teams may have

preferred software libraries that ensure

compatibility and functionality across

your software portfolio. Whatever the

case, the SCA solution you select should

be a key supporter of these stakeholders’

needs.

If you can, focus on solutions with higher

accuracy and fewer false positives, often

by way of the detection methodology.

You and your security, DevOps, and

development teams have precious little

time to parse through lengthy catalogs

of potential risks to arrive at a pared-

down list of true issues. Comprehensive

results can be good, but only if you have

the time to review and verify them.

Take note of available integrations with

package managers, build tools, code

repositories, issue management

solutions, and so on. These are not only

the mechanisms which help generate

accurate and impactful results, but

they are those which enable direct and

timely proliferation of critical insight to

the people and teams who need it to

minimize risk. This is critical in today’s

agile, DevOps, CI/CD landscape.

Look for solutions that provide a

comprehensive list of any publicly

reported vulnerabilities in the

components, accompanied by

remediation guidance for those

vulnerabilities. Give special

consideration to solutions backed by a

security research team which performs

primary security research to find zero-

day or non-public vulnerabilities, and

enhance existing security records.

O P E N S O U R C E C O O K B O O K 28

We began this eBook with a brief discussion
about custom code vs. open source software
in light of component evolution, licenses,
and vulnerabilities. Then, we moved on to a
cookbook analogy that should have helped
you better understand the caveats of open
source software usage. We next dove deeply
into Software Composition Analysis (SCA),
how it compares to SAST solutions, key
aspects of SCA, and the various detection
methodologies and approaches. Finally,
we covered risk metrics and ended with
points to consider when purchasing an SCA
solution.

What You’ve
Learned

O P E N S O U R C E C O O K B O O K 29

The increasing reliance on open source software will
not likely change any time soon. More developers and
organizations will continue to use open source simply
because it makes the most sense for reasons we’ve
discussed. As a result, organizations must add SCA to
their software kitchen (so to speak) to complement the
AST tools that are most likely already in use. The real key
is to select an SCA solution that can be fully integrated
with your software development tools, supports

Conclusion

internal and external standards for risk tolerance and
compliance, and gets detailed insight into the hands of
people who need it.

Many security experts expect to see an uptick in
cybercriminals exploiting vulnerable open source
libraries to gain access to sensitive and valuable data,
largely due to the prevalence and accessibility of open
source components and the (historically) inadequate
documentation, evaluation, and monitoring of the risks
they contain. Clearly, SCA solutions are needed now and
will be required well into the future.

